Митохондриальная днк это – В митохондриальной ДНК волосатиков много длинных палиндромов в белок-кодирующих генах

Содержание

Митохондриальная ДНК — Википедия

Схема митохондриального генома человека

Митохондриальная ДНК (мтДНК) — ДНК, находящаяся (в отличие от ядерной ДНК) в митохондриях, органоидах эукариотических клеток.

Гены, закодированные в митохондриальной ДНК, относятся к группе плазмагенов, расположенных вне ядра (вне хромосомы). Совокупность этих факторов наследственности, сосредоточенных в цитоплазме клетки, составляет плазмон данного вида организмов (в отличие от генома)[1].

Митохондриальная ДНК была открыта Маргит Насс и Сильвен Насс в 1963 году в Стокгольмском университете при помощи электронной микроскопии[2] и, независимо, учёными Эллен Харлсбруннер, Хансом Туппи и Готтфридом Шацем при биохимическом анализе фракций митохондрий дрожжей в Венском университете в 1964 году.[3]

Теории возникновения митохондриальной ДНК[править | править код]

Согласно эндосимбиотической теории, митохондриальная ДНК произошла от кольцевых молекул ДНК бактерий и поэтому имеет иное происхождение, чем ядерный геном. Сейчас преобладает точка зрения, согласно которой митохондрии имеют монофилетическое происхождение, то есть были приобретены предками эукариот лишь однажды.

На основании сходства в последовательностях нуклеотидов ДНК ближайшими родственниками митохондрий среди ныне живущих прокариот считают альфа-протеобактерий (в частности, выдвигалась гипотеза, что к митохондриям близки риккетсии). Сравнительный анализ геномов митохондрий показывает, что в ходе эволюции происходило постепенное перемещение генов предков современных митохондрий в ядро клетки. Необъяснимыми с эволюционной точки зрения остаются некоторые особенности митохондриальной ДНК (например, довольно большое число интронов, нетрадиционное использование триплетов и другие). Ввиду ограниченного размера митохондриального генома бо́льшая часть митохондриальных белков кодируется в ядре. При этом бо́льшая часть митохондриальных тРНК кодируются митохондриальным геномом.

Формы и число молекул митохондриальной ДНК[править | править код]

Электронная микроскопия показывает определённое расположение мтДНК в митохондриях человека. Разрешение 200 нм. (A) Сечение через цитоплазму после окрашивания мтДНК частичками золота. (B) Цитоплазма после экстракции; мтДНК, связанные с частичками золота, остались на месте. Из статьи Iborra et al., 2004.[4]

У большинства изученных организмов митохондрии содержат только кольцевые молекулы ДНК, у некоторых растений одновременно присутствуют и кольцевые, и линейные молекулы, а у ряда протистов (например, инфузорий) имеются только линейные молекулы.[5]

Митохондрии млекопитающих обычно содержат от двух до десяти идентичных копий кольцевых молекул ДНК.

[6]

У растений каждая митохондрия содержит несколько молекул ДНК разного размера, которые способны к рекомбинации.

У протистов из отряда кинетопластид (например, у трипаносом) в особом участке митохондрии (кинетопласте) содержится два типа молекул ДНК — идентичные макси-кольца (20–50 штук) длиной около 21 т. п. о. и мини-кольца (20 000–55 000 штук, около 300 разновидностей, средняя длина около 1000 п. о.). Все кольца соединены в единую сеть (катенаны), которая разрушается и восстанавливается при каждом цикле репликации. Макси-кольца гомологичны митохондриальной ДНК других организмов. Каждое мини-кольцо содержит четыре сходных консервативных участка и четыре уникальных гипервариабельных участка.[7] В мини-кольцах закодированы короткие молекулы направляющих РНК (guideRNA), которые осуществляют редактирование РНК, транскрибируемых с генов макси-колец.

Митохондриальная ДНК особенно чувствительна к активным формам кислорода, генерируемым дыхательной цепью, в связи с непосредственной их близостью. Хотя митохондриальная ДНК связана с белками, их защитная роль менее выражена, чем в случае ядерной ДНК. Мутации в ДНК митохондрий могут вызывать передаваемые по материнской линии наследственные заболевания. Также имеются данные, указывающие на возможный вклад мутаций митохондриальной ДНК в процесс старения и развитие возрастных патологий.[8] У человека митохондриальная ДНК обычно присутствует в количестве 100—10000 копий на клетку (сперматозоиды и яйцеклетки являются исключением). С множественностью митохондриальных геномов связаны особенности проявления митохондриальных болезней — обычно позднее их начало и очень изменчивые симптомы.

Наследование по материнской линии[править | править код]

У большинства многоклеточных организмов митохондриальная ДНК наследуется по материнской линии. Яйцеклетка содержит на несколько порядков больше копий митохондриальной ДНК, чем сперматозоид. В сперматозоиде обычно не больше десятка митохондрий (у человека — одна спирально закрученная митохондрия), в небольших яйцеклетках морского ежа — несколько сотен тысяч, а в крупных ооцитах лягушки — десятки миллионов. Кроме того, обычно происходит деградация митохондрий сперматозоида после оплодотворения[9].

При половом размножении митохондрии, как правило, наследуются исключительно по материнской линии, митохондрии сперматозоида обычно разрушаются после оплодотворения. Кроме того, большая часть митохондрий сперматозоида находятся в основании жгутика, которое при оплодотворении иногда теряется. В 1999 году было обнаружено, что митохондрии сперматозоидов помечены убиквитином (белком-меткой, которая приводит к разрушению отцовских митохондрий в зиготе)

[10].

Так как митохондриальная ДНК не является высококонсервативной и имеет высокую скорость мутирования, она является хорошим объектом для изучения филогении (эволюционного родства) живых организмов. Для этого определяют последовательности митохондриальной ДНК у разных видов и сравнивают их при помощи специальных компьютерных программ и получают эволюционное древо для изученных видов. Исследование митохондриальных ДНК собак позволило проследить происхождение собак от диких волков[11]. Исследование митохондриальной ДНК в популяциях человека позволило вычислить «митохондриальную Еву», гипотетическую прародительницу всех живущих в настоящее время людей.

Наследование по отцовской линии[править | править код]

Для некоторых видов показана передача митохондриальной ДНК по мужской линии, например, у мидий

[12][13]. Наследование митохондрий по отцовской линии также описано для некоторых насекомых, например, для дрозофилы,[14]медоносных пчел[15] и цикад.[16]

Существуют также данные о митохондриальном наследовании по мужской линии у млекопитающих. Описаны случаи такого наследования для мышей,[17][18] при этом митохондрии, полученные от самца, впоследствии отторгаются. Такое явление показано для овец [19] и клонированного крупного рогатого скота.[20]

Наследование по отцовской линии у людей[править | править код]

До недавнего времени считалось, что митохондрии человека наследуются только по материнской линии. Был известен лишь один-единственный случай пациента, у которого в 2002 году достоверно обнаружили отцовскую митохондриальную ДНК[21].

Лишь недавнее исследование 2018 года показало, что митохондриальная ДНК человека иногда всё же может передаваться и по отцовской линии. Небольшое количество митохондрий отца может попасть в яйцеклетку матери вместе с цитоплазмой сперматозоида, но, как правило, отцовские митохондрии после этого из зиготы исчезают. Однако, было обнаружено, что у некоторых людей существует «мутация, которая помогает выживать митохондриям отца»

[22].

У млекопитающих каждая молекула мтДНК содержит 15000-17000 пар оснований (у человека 16565 пар нуклеотидов — исследование закончено в 1981 году[23], по другому источнику 16569 пар[24]) и содержит 37 генов — 13 кодируют белки, 22 — гены тРНК, 2 — рРНК (по одному гену для 12S и 16S рРНК). Другие многоклеточные животные имеют схожий набор митохондриальных генов, хотя некоторые гены могут иногда отсутствовать. Генный состав мтДНК разных видов растений, грибов и особенно протистов

[25] различается более значительно. Так, у жгутиконосца-якобиды Reclinomonas americana найден наиболее полный из известных митохондриальных геномов: он содержит 97 генов, в том числе 62 гена, кодирующих белки (27 рибосомальных белков, 23 белка, участвующих в работе электрон-транспортной цепи и в окислительном фосфорилировании, а также субъединицы РНК-полимеразы).

Один из наиболее маленьких митохондриальных геномов имеет малярийный плазмодий (около 6.000 п.о., содержит два гена рРНК и три гена, кодирующих белки).

Недавно открытые рудиментарные митохондрии (митосомы) некоторых протистов (дизентерийной амёбы, микроспоридий и лямблий) не содержат ДНК.[26]

Митохондриальные геномы различных видов грибов содержат от 19 431 (делящиеся дрожжи Schizosaccharomyces pombe) до 100 314 (сордариомицет Podospora anserina

) пар нуклеотидов[27].

Некоторые растения имеют огромные молекулы митохондриальной ДНК (до 25 миллионов пар оснований), при этом содержащие примерно те же гены и в том же количестве, что и меньшие мтДНК. Длина митохондриальной ДНК может широко варьировать даже у растений одного семейства. В митохондриальной ДНК растений имеются некодирующие повторяющиеся последовательности.

Геном человека содержит только по одному промотору на каждую комплементарную цепь ДНК[23].

Геном митохондрий человека кодирует следующие белки и РНК:

Белки или РНК Гены
NADH-дегидрогеназа
(комплекс I)
MT-ND1, MT-ND2, MT-ND3, MT-ND4, MT-ND4L, MT-ND5, MT-ND6
Кофермент Q — цитохром c редуктаза/Цитохром b
(комплекс III)
MT-CYB
цитохром c оксидаза
(комплекс IV)
MT-CO1, MT-CO2, MT-CO3
АТФ-синтаза MT-ATP6, MT-ATP8
рРНК MT-RNR1 (12S), MT-RNR2 (16S)
тРНК MT-TA, MT-TC, MT-TD, MT-TE, MT-TF, MT-TG, MT-TH, MT-TI, MT-TK, MT-TL1, MT-TL2, MT-TM, MT-TN, MT-TP, MT-TQ, MT-TR, MT-TS1, MT-TS2, MT-TT, MT-TV, MT-TW, MT-TY, MT1X

Кодирующие последовательности (кодоны) митохондриального генома имеют некоторые отличия от кодирующих последовательностей универсальной ядерной ДНК.

Так, кодон AUA кодирует в митохондриальном геноме метионин (вместо изолейцина в ядерной ДНК), кодоны AGA и AGG — терминаторные кодоны (в ядерной ДНК кодируют аргинин), кодон UGA в митохондриальном геноме кодирует триптофан[23].

Если говорить точнее, то речь идёт не о митохондриальной ДНК, а о мРНК, которая списывается (транскрибируется) с этой ДНК перед началом синтеза белка. Буква U в обозначении кодона обозначает уридин, который при транскрипции гена в РНК заменяет тимин.

Количество генов тРНК (22 гена) меньше, чем в ядерном геноме с его 32 генами тРНК[23].

В человеческом митохондриальном геноме информация настолько сконцентрирована, что в последовательностях, кодирующих мРНК, как правило, частично удалены нуклеотиды, соответствующие 3′-концевым терминаторным кодонам[23].

Кроме использования при построении различных филогенетических теорий, изучение митохондриального генома — основной инструмент при проведении идентификации. Возможность идентификации связана с существующими в митохондриальном геноме человека групповыми и даже индивидуальными различиями.

Последовательность участка гена субъединицы I цитохром с-оксидазы, кодируемого в митохондриальной ДНК, широко используется в проектах, связанных с ДНК-баркодированием животных — определением принадлежности организма к тому или иному таксону на основе коротких маркеров в его ДНК

[28][29]. Для баркодирования растений используется преимущественно комбинация двух маркёров в пластидной ДНК[30].

Группа Шухрата Миталипова из центра эмбриональных клеток и генной терапии Орегонского университета разработала метод замены митохондриальной ДНК для лечения наследственных митохондриальных заболеваний. Сейчас в Великобритании начаты клинические испытания этого метода, получившего неофициальное название «3-parent baby technique» — «ребенок от трех родителей». Известно также о рождении в результате этой процедуры ребенка в Мексике[31].

  1. ↑ Джинкс Д., Нехромосомная наследственность, пер. с англ., М., 1966; Сэджер Р., Гены вне хромосом, в кн.: Молекулы и клетки, пер. с англ., М., 1966.
  2. ↑ Nass, M.M. & Nass, S. (1963 at the Wenner-Gren Institute for Experimental Biology, Stockholm University, Stockholm, Sweden): Intramitochondrial Fibers with DNA characteristics (PDF). In: J. Cell. Biol. Bd. 19, S. 593—629. PMID 14086138
  3. ↑ Ellen Haslbrunner, Hans Tuppy and Gottfried Schatz (1964 at the Institut for Biochemistry at the Medical Faculty of the University of Vienna in Vienna, Австрия): «Deoxyribonucleic Acid Associated with Yeast Mitochondria» (PDF) Biochem. Biophys. Res. Commun. 15, 127—132.
  4. Iborra F. J., Kimura H., Cook P. R. The functional organization of mitochondrial genomes in human cells (англ.) // BMC Biol. (англ.)русск. : journal. — 2004. — Vol. 2. — P. 9. — DOI:10.1186/1741-7007-2-9. — PMID 15157274.
  5. ↑ Дымшиц Г. М. Сюрпризы митохондриального генома. Природа, 2002, N 6
  6. Wiesner R. J., Ruegg J. C., Morano I. Counting target molecules by exponential polymerase chain reaction, copy number of mitochondrial DNA in rat tissues (англ.) // Biochim Biophys Acta. (англ.)русск. : journal. — 1992. — Vol. 183. — P. 553—559. — PMID 1550563.
  7. ↑ doi:10.1016/j.exppara.2006.04.005 (недоступная ссылка)
  8. Alexeyev, Mikhail F.; LeDoux, Susan P.; Wilson, Glenn L. Mitochondrial DNA and aging (неопр.) // Clinical Science. — 2004. — July (т. 107, № 4). — С. 355—364. — DOI:10.1042/CS20040148. — PMID 15279618.
  9. Ченцов Ю. С. Общая цитология. — 3-е изд. — МГУ, 1995. — 384 с. — ISBN 5-211-03055-9.
  10. Sutovsky, P., et. al. Ubiquitin tag for sperm mitochondria (англ.) // Nature. — Nov. 25, 1999. — Vol. 402. — P. 371—372. — DOI:10.1038/46466. — PMID 10586873. Discussed in [1]
  11. Vilà C., Savolainen P., Maldonado J. E., and Amorin I. R. Multiple and Ancient Origins of the Domestic Dog (англ.) // Science : journal. — 1997. — 13 June (vol. 276). — P. 1687—1689. — ISSN 0036-8075. — DOI:10.1126/science.276.5319.1687. — PMID 9180076.
  12. Hoeh W. R., Blakley K. H., Brown W. M. Heteroplasmy suggests limited biparental inheritance of Mytilus mitochondrial DNA (англ.) // Science : journal. — 1991. — Vol. 251. — P. 1488—1490. — DOI:10.1126/science.1672472. — PMID 1672472.
  13. Penman, Danny. Mitochondria can be inherited from both parents, NewScientist.com (23 августа 2002). Дата обращения 5 февраля 2008.
  14. Kondo R., Matsuura E. T., Chigusa S. I. Further observation of paternal transmission of Drosophila mitochondrial DNA by PCR selective amplification method (англ.) // Genet. Res. (англ.)русск. : journal. — 1992. — Vol. 59, no. 2. — P. 81—4. — PMID 1628820.
  15. Meusel M. S., Moritz R. F. Transfer of paternal mitochondrial DNA during fertilization of honeybee (Apis mellifera L.) eggs (англ.) // Curr. Genet. : journal. — 1993. — Vol. 24, no. 6. — P. 539—543. — DOI:10.1007/BF00351719. — PMID 8299176.
  16. Fontaine, K. M., Cooley, J. R., Simon, C. Evidence for paternal leakage in hybrid periodical cicadas (Hemiptera: Magicicada spp.) (исп.) // PLoS One. : diario. — 2007. — V. 9. — P. e892. — DOI:10.1371/journal.pone.0000892.
  17. Gyllensten U., Wharton D., Josefsson A., Wilson A. C. Paternal inheritance of mitochondrial DNA in mice (англ.) // Nature. — 1991. — Vol. 352, no. 6332. — P. 255—257. — DOI:10.1038/352255a0. — PMID 1857422.
  18. Shitara H., Hayashi J. I., Takahama S., Kaneda H., Yonekawa H. Maternal inheritance of mouse mtDNA in interspecific hybrids: segregation of the leaked paternal mtDNA followed by the prevention of subsequent paternal leakage (англ.) // Genetics : journal. — 1998. — Vol. 148, no. 2. — P. 851—857. — PMID 9504930.
  19. Zhao X., Li N., Guo W., et al. Further evidence for paternal inheritance of mitochondrial DNA in the sheep (Ovis aries) (англ.) // Heredity : journal. — 2004. — Vol. 93, no. 4. — P. 399—403. — DOI:10.1038/sj.hdy.6800516. — PMID 15266295.
  20. Steinborn R., Zakhartchenko V., Jelyazkov J., et al. Composition of parental mitochondrial DNA in cloned bovine embryos (англ.) // FEBS Lett. (англ.)русск. : journal. — 1998. — Vol. 426, no. 3. — P. 352—356. — DOI:10.1016/S0014-5793(98)00350-0. — PMID 9600265.
  21. Schwartz M., Vissing J. Paternal inheritance of mitochondrial DNA (англ.) // N. Engl. J. Med. : journal. — 2002. — Vol. 347, no. 8. — P. 576—580. — DOI:10.1056/NEJMoa020350. — PMID 12192017.
  22. ↑ Митохондриальная ДНК может передаваться по отцовской линии • Полина Лосева • Новости науки на «Элементах» • Генетика, Микробиология
  23. 1 2 3 4 5 Айала Ф. Д. Современная генетика. 1987.
  24. ↑ Архивированная копия (неопр.) (недоступная ссылка). Дата обращения 10 октября 2009. Архивировано 13 августа 2011 года.
  25. MW Gray, BF Lang, R Cedergren, GB Golding, C Lemieux, D Sankoff, M Turmel, N Brossard, E Delage, TG Littlejohn, I Plante, P Rioux, D Saint-Louis, Y Zhu and G Burger. Genome structure and gene content in protist mitochondrial DNAs (англ.) // Nucleic Acids Research (англ.)русск. : journal. — 1998. — Vol. 26. — P. 865—878.http://nar.oxfordjournals.org/cgi/content/abstract/26/4/865
  26. ↑ en:Mitosome#cite note-Leon04-7
  27. Дьяков Ю. Т., Шнырева А. В., Сергеев А. Ю. Введение в генетику грибов. — М.: изд. центр «Академия», 2005. — С. 52. — ISBN 5-7695-2174-0.
  28. Paul D. N. Hebert, Alina Cywinska, Shelley L. Ball, Jeremy R. deWaard. Biological identifications through DNA barcodes (англ.) // Proceedings of the Royal Society of London B: Biological Sciences. — 2003-02-07. — Vol. 270, iss. 1512. — P. 313—321. — ISSN 0962-8452. — DOI:10.1098/rspb.2002.2218.
  29. Živa Fišer Pečnikar, Elena V. Buzan. 20 years since the introduction of DNA barcoding: from theory to application // Journal of Applied Genetics. — 2014-02-01. — Т. 55, вып. 1. — С. 43—52. — ISSN 2190-3883. — DOI:10.1007/s13353-013-0180-y.
  30. CBOL Plant Working Group1, Peter M. Hollingsworth, Laura L. Forrest, John L. Spouge, Mehrdad Hajibabaei. A DNA barcode for land plants (англ.) // Proceedings of the National Academy of Sciences. — National Academy of Sciences, 2009-08-04. — Vol. 106, iss. 31. — P. 12794—12797. — ISSN 0027-8424. — DOI:10.1073/pnas.0905845106.
  31. Алла Астахова. Тонкая работа — 2 (неопр.). Блог о здравоохранении (22 августа 2017).

Генетическая экспертиза митохондриальной ДНК (мтДНК). Стоимость.

Генетическая информация определяет рост, развитие, строение, обмен веществ, психологический склад человека, а также предрасположенность к различным заболеваниям. Эта информация зашифрована в ДНК, которая представлена не только в ядре клетки, но и в органеллах (митохондриях), необходимых для превращения химической энергии из пищи в формы, необходимые клетке – это так называемая митохондриальная ДНК.

Митохондрии – это «энергетические станции» клетки, без которых она не сможет существовать. Митохондрии имеют собственную генетическую информацию, зашифрованную в митохондриальной ДНК. Когда-то митохондрии представляли собой бактерии. Но, попав в эукариотические клетки, они растеряли часть своей генетической информации, часть отдали в ядро клетки-хозяина, и сейчас митохондриальная ДНК состоит всего лишь из 37 генов, необходимых для окисления глюкозы до углекислого газа и воды и синтеза клеточного «топлива»: АТФ (аденозинтрифосфат) и НАДН (восстановленная форма никотинамидадениндинуклеотида).

Митохондриальная ДНК передается от матери ко всем ее детям, от дочерей к внукам. Почему же так происходит? Почему мы не можем унаследовать митохондриальную ДНК от отца?

Яйцеклетки (женские половые клетки) содержат огромное количество митохондрий, в сотни, а то и в тысячи раз больше, чем содержат сперматозоиды (мужские половые клетки), которым митохондрии необходимы в основном только для движения. При оплодотворении сперматозоид проникает в яйцеклетку, зачастую теряя свой жгутик и митохондрии, которые находятся в основании жгутика. Затем сперматозоид сливается с яйцеклеткой, происходит образование зиготы. Митохондрии сперматозоида, меченные убиквитинином, разрушаются ооцитом, и ядро сперматозоида сливается с ядром яйцеклетки (Рисунок 1), давая начало новой жизни.

Образование зиготы. Все клетки человека кроме половых клеток несут диплоидный набор хромосом (46 хромосом). В ядрах половых клеток находится гаплоидный набор хромосом (23 хромосомы). После слияния сперматозоида с яйцеклеткой образуется зигота, формируются мужской и женские нуклеусы (в них находится по 23 хромосомы), которые сближаются и  сливаются в ядро зиготы. С этого момента клетка становится диплоидной (несет двойной набор хромосом) и начинается деление клетки.

Рисунок 1. Образование зиготы. Все клетки человека, кроме половых, несут диплоидный набор хромосом (46 хромосом). В ядрах половых клеток находится гаплоидный набор хромосом (23 хромосомы). После слияния сперматозоида с яйцеклеткой образуется зигота, формируются мужской и женские нуклеусы (в них находится по 23 хромосомы), которые сближаются и сливаются в ядро зиготы. С этого момента клетка становится диплоидной (несет двойной набор хромосом), и начинается деление клетки.

Митохондриальная ДНК наследуется по материнской линии. И мужчины, и женщины получают митохондрии из цитоплазмы материнской яйцеклетки. Эти маленькие двуспиральные цепочки ДНК тянутся к нам из далекого прошлого, со времен проматери «митохондриальной Евы», которая являлась общим предком всех ныне живущих людей по материнской линии. Если ядерную ДНК, которая представлена 46-ю хромосомами, ребенок наследует от обоих родителей (половину – 23 – от матери, половину от отца), то митохондрии и мтДНК ребенок получает только от матери (Рисунок 2). Именно поэтому митохондриальная ДНК является идеальным объектом для генетической экспертизы родственных связей по материнской линии. Но если в случае установления отцовства используются полиморфизмы длин амплифицированных фрагментов (ПДАФ), то генетическая экспертиза митохондриальной ДНК представляет собой выявление индивидуальных точковых нуклеотидных изменений в ДНК митохондрий, их отождествление или дифференцировку. В митохондриальной ДНК гены очень плотно «упакованы». Несмотря на то что в мтДНК очень мало тандемных повторов, она буквально «напичкана» точковыми мутациями, что делает ее весьма вариабельной (это значит, что она совсем разная у людей, не имеющих общих предков по материнской линии). Именно эти мутации детектируют и анализируют с помощью секвенаторов нового поколения при исследовании митохондриальной ДНК.

Принцип наследования мтДНК. В виде разноцветных кругов показано различающиеся копии мтДНК.

Рисунок 2. Принцип наследования мтДНК. В виде разноцветных кругов показаны различающиеся копии мтДНК.

Митохондриальная ДНК обладает рядом особенностей, которые отличают ее от ядерной ДНК и позволяют использовать при генетической экспертизе:

  • мтДНК не подвержена рекомбинации, поэтому вся молекула изменяется только путем мутирования на протяжении тысячелетий;
  • данный тип ДНК наследуется только по материнской линии;
  • мтДНК можно выделить из любого биологического материала;
  • благодаря большому количеству копий мтДНК иногда может быть единственным источником ДНК — например, при сильно деградированной ядерной ДНК или недостаточности биологического материала;
  • высокий мутационный уровень мтДНК, по сравнению с одной копией ядерной ДНК, увеличивает идентификационный уровень генетической экспертизы.

В каких случаях необходимо проведение генетической экспертизы митохондриальной ДНК (мтДНК)?

  • для установления родственной связи между двумя женщинами или женщиной и мужчиной у предполагаемых родственников по материнской линии. Например, дед/бабка-внук, дядя/тетя-племянник, брат-сестра;
  • при исследовании крайне малого объема биологического материала. Количество копий мтДНК в одной клетке составляет 100-10 000, в то время как в ядерной ДНК всего лишь по две пары каждой из 23 хромосом;
  • при исследовании образцов десятилетней, столетней и даже тысячелетней давности. Так, например, по мтДНК удалось идентифицировать останки членов российской императорской семьи Романовых.
  • за неимением другого генетического материала. Например, при наличии всего лишь одного волоса. Ствол (стержень) волоса содержит незначительное количество ядерной ДНК, но является хорошим источником митохондриальной ДНК;
  • для определения принадлежности генетического профиля той или иной генеалогической ветви человечества (европейской гаплогруппе, африканской, ближневосточной, американской и т.д.). Таким образом, можно определить происхождение человека.

Какие материалы необходимо предоставить для проведения генетической экспертизы митохондриальной ДНК (мтДНК)?

Митохондриальная ДНК присутствует во всех клетках организма. Она находится даже в тех клетках организма, в которых отсутствует ядро (тромбоциты, эритроциты, клетки стержня волос и т.д.). Поэтому для получения мтДНК подходят любые ткани организма: кости, зубы, кровь, сперма, фрагменты скелетированных трупов, фрагменты частей тела и многое другое. Обычно, как и при генетической экспертизе по установлению отцовства или материнства, берутся образцы буккального эпителия (соскоб ватной палочкой с внутренней стороны щеки), кровь из пальца в объеме 0,3-0,5 мл, кровь на ватном диске, волосы или ногти. Взятие образцов тканей осуществляется в соответствии со следующими законами:

  • ст. 35 Федерального закона от 31 мая 2001 г. №73-ФЗ «О государственной судебно-экспертной деятельности в Российской Федерации»;
  • п. 84.4 «Порядок организации и производства судебно-медицинских экспертиз в государственных судебно-экспертных учреждениях Российской Федерации» (Приказ Минздравсоцразвития РФ №346н от 12.05.2010 г.).

Эксперты-генетики после получения биологического материала направляются в специализированную лабораторию, где полученный биоматериал последовательно проходит три этапа исследования: 1) выделение мтДНК; 2) амплифицирование (многократное умножение) определенного локуса мтДНК; 3) определение первичной последовательности нуклеотидов амплифицированного локуса.

На первом этапе эксперт производит выделение ДНК из полученного материала. Выделение митохондриальной ДНК из клеток является очень сложным процессом и в некоторых случаях может продлиться 24 часа. Например, весь процесс выделения митохондриальной ДНК из крови составляет около двух часов, в то время как для того, чтобы только лизировать (разрушить) ткань волоса или ногтя, приходится обрабатывать ее соответствующим ферментом около 12 часов. В большинстве случаев для этих целей используются коммерческие наборы реактивов ведущих зарубежных фирм-производителей, таких как Applied Biosystems (США), Promega (США), QIAGEN (Германия).

На втором этапе анализа производят полимеразно-цепную реакцию (ПЦР-реакцию), в результате которой определенный участок мтДНК (D-петля, или так называемая петля смещения) многократно увеличивается. Именно анализ нуклеотидной последовательности D-петли является дифференцирующим признаком при исследовании мтДНК. Высокий уровень вариабельности D-петли обусловлен тем, что у разных людей этот участок может иметь разную первичную последовательность нуклеотидов (так называемых «кирпичиков», из которых построена ДНК). В популяции обнаруживается целый набор вариантов, отличающихся друг от друга наличием различных мутаций: точковых нуклеотидных замен, микроделеций и микроинсерций. У каждого индивидуума в популяции имеется в норме только один такой вариант, который этот индивидуум унаследовал по своей материнской линии. Как следствие, полинуклеотидная D-петля обладает свойством индивидуальной специфичности.

На следующем этапе производят очистку амплифицированного участка митохондриальной ДНК и его секвенирование. Секвенирование – это определение первичной последовательности ДНК, иными словами — расшифровка генетического кода, который в принципе уникален для каждого организма. Сравнивая нуклеотидные последовательности D-петли из разных образцов, эксперт устанавливает степень их соответствия друг другу, а также сравнивает их с референсной последовательностью мтДНК. Расчет несовпадения нуклеотидов (мутаций) ДНК осуществляется согласно ст. 3.6 Методических указаний Минздрава РФ №2001/4 от 25.01.2001 г. «Применение молекулярно-генетической индивидуализирующей системы на основе полиморфизма нуклеотидных последовательностей митохондриальной ДНК в судебно-медицинской экспертизе идентификации личности и установления биологического родства». В выводах генетической экспертизы митохондриальной ДНК указывается вероятность совпадения признаков, выраженная в процентах.

Все результаты тестирования мтДНК сравнивают с так называемой «стандартной кембриджской последовательностью». Это первая нуклеотидная последовательность митохондриальной ДНК, которая была расшифрована. Данная работа была выполнена в 1981 году в Кембридже Стеном Андерсеном, за что последовательность мтДНК получила второе название — «последовательность Андерсена» (в англоязычной литературе). Поскольку это была первая последовательность мтДНК, ее и взяли за международный стандарт. В настоящее время все мутации в анализируемой последовательности отсчитывают от нее. Сравнивая нуклеотидную последовательность исследуемой мтДНК со стандартной кембриджской последовательностью, устанавливают генетический профиль исследуемой мтДНК, то есть дают ему индивидуальную генетическую характеристику.

По генетическому профилю устанавливают, к какой расе или гаплогруппе относится исследуемая митохондриальная ДНК (и соответственно человек, которому она принадлежит). Следовательно, генетическая экспертиза митохондриальной ДНК позволяет построить ДНК-генеалогию и в определенных случаях предвидеть внешность разыскиваемого человека. Если по Y-хромосоме ученые пытаются найти предполагаемого Адама, то по генетическому профилю мтДНК можно найти предполагаемую Еву.

Генетическая экспертиза митохондриальной ДНК отвечает на два главных вопроса:

  1. Имеются ли совпадения нуклеотидных последовательностей мтДНК у анализируемых биологических образцов? Для этого по определенным правилам сопоставляют полученные индивидуальные профили полиморфизма анализируемых фрагментов ДНК с целью их отождествления или выявления сходства и различий и установления на этом основании определенных фактов, которые могут иметь доказательственное значение по делу.
  2. Если совпадение признаков установлено, то какова вероятность того, что это совпадение закономерно, а не является случайностью?

Нормативно-правовые документы, определяющие порядок проведения в Российской Федерации генетической экспертизы митохондриальной ДНК:

  • Федеральный закон от 31 мая 2001 г. №73-ФЗ «О государственной судебно-экспертной деятельности в Российской Федерации»;
  • Приказ Минздравсоцразвития РФ №346н от 12.05.2010 г. «Об утверждении Порядка организации и производства судебно-медицинских экспертиз»;
  • Методические указания Минздрава РФ №2001/4 от 25.01.2001 г. «Применение молекулярно-генетической индивидуализирующей системы на основе полиморфизма нуклеотидных последовательностей митохондриальной ДНК в судебно-медицинской экспертизе идентификации личности и установления биологического родства»;
  • Семейный кодекс РФ. Глава 10 «Установление происхождения детей».

Митохондриальная ДНК и семейная история

Экология потребления. Здоровье: Гаплогруппа — группа схожих гаплотипов, имеющих общего предка, у которого в обоих гаплотипах имела место одна и та же мутация…

Когда я еще в детстве, расспрашивал свою бабушку о корнях, она рассказала одну легенду, что ее далекий прадед взял в жены «местную» девушку. Я заинтересовался этим и предпринял небольшое исследование. Местные для Вологодской области – это финно-угорский народ вепсы. Чтобы точно проверить эту семейную легенду, я обратился к генетике. И она подтвердила семейную легенду.

 

Что такое генетическое исследование?

Гаплогруппа (в популяционной генетике человека — науке, изучающей генетическую историю человечества) — группа схожих гаплотипов, имеющих общего предка, у которого в обоих гаплотипах имела место одна и та же мутация. Термин «гаплогруппа» широко применяется в генетической генеалогии, где изучаются гаплогруппы Y-хромосомные (Y-ДНК), митохондриальные (мтДНК) и ГКГ-гаплогруппы. Генетические маркеры Y-ДНК передаются с Y-хромосомой исключительно по отцовской линии (то есть от отца сыновьям), а маркеры мтДНК — по материнской линии (от матери всем детям).

 

 Митохондриальная ДНК (D5a3a) и семейная история. Митохондриальная ДНК (D5a3a) и семейная история.м

 

Митохондриальное ДНК (далее мтДНК) передается от матери к ребенку. Поскольку только женщины могут передавать мтДНК своим потомкам, тестирование мтДНК дает информацию о матери, ее матери и так далее по прямой материнской линии. мтДНК от матери получают как мужчины, так и женщины, по этой причине в проведении тестирования мтДНК могут принимать участие и мужчины, и женщины. Хотя в мтДНК и происходят мутации, их частота относительно низка. В течении тысячелетий данные мутации накапливались, и по этой причине женская линия в одной семье генетически отличается от другой. После того, как человечество расселилось по планете, мутации продолжили случайное появление в разделенных растоянием популяциях некогда единого человеческого рода.

Митохондриальная ДНК (D5a3a) и семейная история. Митохондриальная ДНК (D5a3a) и семейная история.м

Миграция митохондриальных гаплогрупп.

Русский север.

Мне очень близка история, природа и культура русского Севера. Это и потому, что оттуда родом моя бабушка, которая жила с нами и много времени посвятила моему воспитанию. Но думаю, что для беларусов близость еще большая: ведь русский север был заселен кривичами, которые также сформировали ядро будущей Беларуси. Кроме того, Псков и Новгород – это древние славянские центры, в определенной мере демократичные, со своем вече (так же как Киев и Полоцк).  

 

Достаточно вспомнить историю Псковской вечевой республики и Новгородской республики. Длительное время эти территории колебались между ВКЛ и Московским княжеством, но последнее перехватило инициативу в «собирании земель». При других обстоятельствах, самобытность этого региона могла бы развиться в самостоятельную национальность. Впрочем, многие с гордостью называют себя «северными русскими». Равно как и  некоторые беларусы, отличают западную беларусь (Литва, литвины) от восточной беларуси (русины). Попрошу не искать в моих словах никакой политической подоплеки.

 

Если в Беларуси славяне смешивались с балтийскими племенами, то в России — с финно-угорскими. Это и обеспечило уникальную этничность разных регионов. Очень точно сказал Парфенов, который родом из соседних с нашими сел: «Я всегда чувствую свое происхождение. Северный русский — для меня это очень важно. Это мое представление о России, о нашем характере, об этике и эстетике. Южнее Воронежа для меня — другие русские.» Любопытно, что Парфеновы есть и у меня в роду. Аксинья Парфенова (1800-1904) – это бабушка Кирилла Кирилловича Коричева (муж Александры Алексеевны Земсковой). Впрочем, фамилия эта распространенная, так что может родственники, а может и нет.

 

Череповец, прабабушка слева, бабушка справа внизу, 1957?

Моя митохондриальная группа — D5a3a.

При секвенировании ГВС1 — 16126с, 16136с, 16182с, 16183с, 16189с,16223Т, 16360Т, 16362С. Это значит, что моя митохондриальная группа — D5a3a. Это очень редкая гаплогруппа, даже генетики удивились – в Беларуси впервые такая определяется. В целом D – это азиатская группа. Ученые пишут, что она встречается в генофондах лишь некоторых этнических групп Северной Евразии. 

 

Единичные D5a3-линии выявлены у таджиков, алтайцев, корейцев и русских Великого Новгорода. Все они (за исключением корейца), характеризуются 16126-16136-16360 ГВС1-мотивом, который встречается также в некоторых популяциях Северо-Восточной Европы. 

 

Село Аннино, 1917, моя прабабушка.

 

Полногеномный анализ показал, что мтДНК русского и манси объединяются в отдель-ный кластер D5a3a, а мтДНК корейца представлена отдельной ветвью. Эволюционный возраст всей гаплогруппы D5a3 составляет примерно 20 тыс. лет (20560 ± 5935), в то время как степень дивергенции D5a3a-линий мтДНК соответствует примерно 5 тыс. лет (5140 ± 1150). D5 — группа отчётливо восточноазиатская. 

 

В Сибири абсолютно преобладают варианты D4. Наиболее многочисленна и разнообразна D5 в Японии, Корее и южном Китае. Среди сибирских народов разнообразие D5 и наличие уникальных чисто этнических её вариантов отмечено у восточных монголоязычных групп, в том числе и у монголизированных эвенков. D5a3 отмечена в архаичном варианте в Корее.Более точный анализ показывает возраст D5a3a до 3000 лет, но родительская D5a3 очень древняя, там наверняка мезолит.

 

Череповец, 1940

 

На основании имеющихся данных кажется логичным предполагать происхождение D5a3 где-то на Дальнем Востоке (между Монголией и Кореей) и её миграцию на запад через Южную Сибирь. Вероятно, что мои прямые предки по женской линии пришли в Европу около трех тысяч лет назад, дав корни в Финляндии, Корелии, среди местных финно-угорских народов: саамы, карелы и вепсы. При смешивании с кривичами, эти гаплогруппы перешли современным жителям Вологды и Новгородчины. 

 

Я уже эту гаплогруппу не передам детям (она передается по женской линии), но в Череповце живут мои замечательные родственницы с такой же гаплогруппой. Так что она продолжит путешествие во времени.  Вот так генетика подтвердила семейную историю.

 

Моя прямая женская линия

 

Село Ерга, 1940

Череповец, 1956

опубликовано econet.ru

Автор Андрей Беловешкин

Митохондриальная ДНК — это… Что такое Митохондриальная ДНК?

Схема митохондриального генома человека

Митохондриальная ДНК (мтДНК) — ДНК, находящаяся (в отличие от ядерной ДНК) в митохондриях, органоидах эукариотических клеток.

Гены, кодированные мтДНК, относятся к группе плазмагенов, расположенных вне ядра (вне хромосомы). Совокупность этих факторов наследственности, сосредоточенных в цитоплазме клетки, составляет плазмон данного вида организмов (в отличие от генома)[1].

История открытия

Митохондриальная ДНК была открыта Маргит Насс и Сильвен Насс в 1963 году в Стокгольмском университете при помощи электронной микроскопии[2] и, независимо, учёными Эллен Харлсбруннер, Хансом Туппи и Готтфридом Шацем при биохимическом анализе фракций митохондрий дрожжей в Венском университете в 1964 году.[3]

Теории возникновения митохондриальной ДНК

Согласно эндосимбиотической теории, митохондриальная ДНК произошла от кольцевых молекул ДНК бактерий и поэтому имеет иное происхождение, чем ядерный геном. Сейчас преобладает точка зрения, согласно которой митохондрии имеют монофилетическое происхождение, то есть были приобретены предками эукариот лишь однажды.

На основании сходства в последовательностях нуклеотидов ДНК ближайшими родственниками митохондрий среди ныне живущих прокариот считают альфа-протеобактерий (выдвигалась также гипотеза, что к митохондриям близки риккетсии). Сравнительный анализ геномов митохондрий показывает, что в ходе эволюции происходило постепенное перемещение генов предков современных митохондрий в ядро клетки. Необъяснимыми с эволюционной точки зрения остаются некоторые особенности митохондриальной ДНК (например, довольно большое число интронов, нетрадиционное использование триплетов и др.). Ввиду ограниченного размера митохондриального генома бо́льшая часть митохондриальных белков кодируется в ядре. При этом бо́льшая часть митохондриальных тРНК кодируются митохондриальным геномом.

Формы и число молекул митохондриальной ДНК

Электронная микроскопия демонстрирует определённую локализацию мтДНК в митохондриях человека. Разрешение 200 нм. (A) Сечение через цитоплазму после окрашивания мтДНК частичками золота. (B) Цитоплазма после экстракции; мтДНК, связанные с частичками золота, остались на месте. Из статьи Iborra et al., 2004.[4]

У большинства изученных организмов митохондрии содержат только кольцевые молекулы ДНК, у некоторых растений одновременно присутствуют и кольцевые, и линейные молекулы, а у ряда протистов (например, инфузорий) имеются только линейные молекулы.[5]

Митохондрии млекопитающих обычно содержат от двух до десяти идентичных копий кольцевых молекул ДНК.[6]

У растений каждая митохондрия содержит несколько молекул ДНК разного размера, которые способны к рекомбинации.

У протистов из отряда кинетопластид (например, у трипаносом) в особом участке митохондрии (кинетопласте) содержится два типа молекул ДНК — идентичные макси-кольца (20-50 штук) длиной около 21 т.п.о. и мини-кольца (20 000 — 55 000 штук, около 300 разновидностей, средняя длина около 1000 п.о.). Все кольца соединены в единую сеть (катенаны), которая разрушается и восстанавливается при каждом цикле репликации. Макси-кольца гомологичны митохондриальной ДНК других организмов. Каждое мини-кольцо содержит четыре сходных консервативных участка и четыре уникальных гипервариабельных участка.[7] В мини-кольцах закодированы короткие молекулы направляющих РНК (guideRNA), которые осуществляют редактирование РНК, транскрибируемых с генов макси-колец.

Устойчивость митохондриальной ДНК

Митохондриальная ДНК особенно чувствительна к активным формам кислорода, генерируемым дыхательной цепью, в связи с непосредственной их близостью. Хотя митохондриальная ДНК связана с белками, их защитная роль менее выражена, чем в случае ядерной ДНК. Мутации в ДНК митохондрий могут вызывать передаваемые по материнской линии наследственные заболевания. Также имеются данные, указывающие на возможный вклад мутаций митохондриальной ДНК в процесс старения и развитие возрастных патологий.[8] У человека митохондриальная ДНК обычно присутствует в количестве 100—10000 копий на клетку (сперматозоиды и яйцеклетки являются исключением). С множественностью митохондриальных геномов связаны особенности проявления митохондриальных болезней — обычно позднее их начало и очень изменчивые симптомы.

Митохондриальная наследственность

Наследование по материнской линии

У большинства многоклеточных организмов митохондриальная ДНК наследуется по материнской линии. Яйцеклетка содержит на несколько порядков больше копий митохондриальной ДНК, чем сперматозоид. В сперматозоиде обычно не больше десятка митохондрий (у человека — одна спирально закрученная митохондрия), в небольших яйцеклетках морского ежа — несколько сотен тысяч, а в крупных ооцитах лягушки — десятки миллионов. Кроме того, обычно происходит деградация митохондрий сперматозоида после оплодотворения.[9]

При половом размножении митохондрии, как правило, наследуются исключительно по материнской линии, митохондрии сперматозоида обычно разрушаются после оплодотворения. Кроме того, большая часть митохондрий сперматозоида находятся в основании жгутика, которое при оплодотворении иногда теряется. В 1999 году было обнаружено, что митохондрии сперматозоидов помечены убиквитином (белком-меткой, которая приводит к разрушению отцовских митохондрий в зиготе).[10]

Так как митохондриальная ДНК не является высококонсервативной и имеет высокую скорость мутирования, она является хорошим объектом для изучения филогении (эволюционного родства) живых организмов. Для этого определяют последовательности митохондриальной ДНК у разных видов и сравнивают их при помощи специальных компьютерных программ и получают эволюционное древо для изученных видов. Исследование митохондриальных ДНК собак позволило проследить происхождение собак от диких волков.[11] Исследование митохондриальной ДНК в популяциях человека позволило вычислить «митохондриальную Еву», гипотетическую прародительницу всех живущих в настоящее время людей.

Наследование по отцовской линии

Для некоторых видов показана передача митохондриальной ДНК по мужской линии, например, у мидий[12][13]. Наследование митохондрий по отцовской линии также описано для некоторых насекомых, например, для дрозофилы,[14]медоносных пчел[15] и цикад.[16]

Существуют также данные о митохондриальном наследовании по мужской линии у млекопитающих. Описаны случаи такого наследования для мышей,[17][18] при этом митохондрии, полученные от самца, впоследствии отторгаются. Такое явление показано для овец [19] и клонированного крупного рогатого скота.[20] Также описан единственный случай связанный с бесплодием у мужчины.[21].

Геном митохондрий

У млекопитающих каждая молекула мтДНК содержит 15000-17000 пар оснований (у человека 16565 пар нуклеотидов — исследование закончено в 1981 году[22], по другому источнику 16569 пар[23]) и содержит 37 генов — 13 кодируют белки, 22 — гены тРНК, 2 — рРНК (по одному гену для 12S и 16S рРНК). Другие многоклеточные животные имеют схожий набор митохондриальных генов, хотя некоторые гены могут иногда отсутствовать. Генный состав мтДНК разных видов растений, грибов и особенно протистов [24] различается более значительно. Так, у жгутиконосца-якобиды Reclinomonas americana найден наиболее полный из известных митохондриальных геномов: он содержит 97 генов, в том числе 62 гена, кодирующих белки (27 рибосомальных белков, 23 белка, участвующих в работе электрон-транспортной цепи и в окислительном фосфорилировании, а также субъединицы РНК-полимеразы).

Один из наиболее маленьких митохондриальных геномов имеет малярийный плазмодий (около 6.000 п.о., содержит два гена рРНК и три гена, кодирующих белки).

Недавно открытые рудиментарные митохондрии (митосомы) некоторых протистов (дизентерийной амёбы, микроспоридий и лямблий) не содержат ДНК.[25]

Митохондриальные геномы различных видов грибов содержат от 19 431 (делящиеся дрожжи Schizosaccharomyces pombe) до 100 314 (сордариомицет Podospora anserina) пар нуклеотидов[26].

Некоторые растения имеют огромные молекулы митохондриальной ДНК (до 25 миллионов пар оснований), при этом содержащие примерно те же гены и в том же количестве, что и меньшие мтДНК. Длина митохондриальной ДНК может широко варьировать даже у растений одного семейства. В митохондриальной ДНК растений имеются некодирующие повторяющиеся последовательности.

Геном человека содержит только по одному промотору на каждую комплементарную цепь ДНК[22].

Геном митохондрий человека кодирует следующие белки и РНК:

Белки или РНК Гены
NADH-дегидрогеназа
(комплекс I)
MT-ND1, MT-ND2, MT-ND3, MT-ND4, MT-ND4L, MT-ND5, MT-ND6
Кофермент Q — цитохром c редуктаза/Цитохром b
(комплекс III)
MT-CYB
цитохром c оксидаза
(комплекс IV)
MT-CO1, MT-CO2, MT-CO3
АТФ-синтаза MT-ATP6, MT-ATP8
рРНК MT-RNR1 (12S), MT-RNR2 (16S)
тРНК MT-TA, MT-TC, MT-TD, MT-TE, MT-TF, MT-TG, MT-TH, MT-TI, MT-TK, MT-TL1, MT-TL2, MT-TM, MT-TN, MT-TP, MT-TQ, MT-TR, MT-TS1, MT-TS2, MT-TT, MT-TV, MT-TW, MT-TY, MT1X

Особенности митохондриальной ДНК

Кодирующие последовательности (кодоны) митохондриального генома имеют некоторые отличия от кодирующих последовательностей универсальной ядерной ДНК.
Так, кодон AUA кодирует в митохондриальном геноме метионин (вместо изолейцина в ядерной ДНК), кодоны AGA и AGG — терминаторные кодоны (в ядерной ДНК кодируют аргинин), кодон UGA в митохондриальном геноме кодирует триптофан[22].
Если говорить точнее, то речь идёт не о митохондриальной ДНК, а о мРНК, которая списывается (транскрибируется) с этой ДНК перед началом синтеза белка. Буква U в обозначении кодона обозначает уридин, который при транскрипции гена в РНК заменяет тимин.
Количество генов тРНК (22 гена) меньше, чем в ядерном геноме с его 32 генами тРНК[22].
В человеческом митохондриальном геноме информация настолько сконцентрирована, что в последовательностях кодирующих мРНК, как правило, частично удалены нуклеотиды, соответствующие 3′-концевым терминаторным кодонам[22].

Применение

Кроме изучения для построения различных филогенетических теорий, изучение митохондриального генома — основной инструмент при проведении идентификации. Возможность идентификации связана с существующими в митохондриальном геноме человека групповыми и даже индивидуальными различиями.

Примечания

  1. Джинкс Д., Нехромосомная наследственность, пер. с англ., М., 1966; Сэджер Р., Гены вне хромосом, в кн.: Молекулы и клетки, пер. с англ., М., 1966.
  2. Nass, M.M. & Nass, S. (1963 at the Wenner-Gren Institute for Experimental Biology, Stockholm University, Stockholm, Sweden): Intramitochondrial Fibers with DNA characteristics (PDF). In: J. Cell. Biol. Bd. 19, S. 593—629. PMID 14086138
  3. Ellen Haslbrunner, Hans Tuppy and Gottfried Schatz (1964 at the Institut for Biochemistry at the Medical Faculty of the University of Vienna in Vienna, Австрия): «Deoxyribonucleic Acid Associated with Yeast Mitochondria» (PDF) Biochem. Biophys. Res. Commun. 15, 127—132.
  4. Iborra FJ, Kimura H, Cook PR (2004). «The functional organization of mitochondrial genomes in human cells». BMC Biol. 2: 9. DOI:10.1186/1741-7007-2-9. PMID 15157274.
  5. Дымшиц Г. М. Сюрпризы митохондриального генома. Природа, 2002, N 6 [1]
  6. Wiesner RJ, Ruegg JC, Morano I (1992). «Counting target molecules by exponential polymerase chain reaction, copy number of mitochondrial DNA in rat tissues». Biochim Biophys Acta. 183: 553–559. PMID 1550563.
  7. doi:10.1016/j.exppara.2006.04.005
  8. (July 2004) «Mitochondrial DNA and aging». Clinical Science 107 (4): 355–364. DOI:10.1042/CS20040148. PMID 15279618.
  9. Ченцов Ю. С. Общая цитология. — 3-е изд. — МГУ, 1995. — 384 с. — ISBN 5-211-03055-9
  10. Sutovsky, P., et. al (Nov. 25, 1999). «Ubiquitin tag for sperm mitochondria». Nature 402: 371–372. DOI:10.1038/46466. PMID 10586873. Discussed in [2].
  11. Vilà C, Savolainen P, Maldonado JE, and Amorin IR (13 June 1997). «Multiple and Ancient Origins of the Domestic Dog». Science 276: 1687–1689. DOI:10.1126/science.276.5319.1687. ISSN 0036-8075. PMID 9180076.
  12. Hoeh WR, Blakley KH, Brown WM (1991). «Heteroplasmy suggests limited biparental inheritance of Mytilus mitochondrial DNA». Science 251: 1488–1490. DOI:10.1126/science.1672472. PMID 1672472.
  13. Penman, Danny. Mitochondria can be inherited from both parents, NewScientist.com (23 August 2002). Проверено 5 февраля 2008.
  14. Kondo R, Matsuura ET, Chigusa SI (1992). «Further observation of paternal transmission of Drosophila mitochondrial DNA by PCR selective amplification method». Genet. Res. 59 (2): 81–4. PMID 1628820.
  15. Meusel MS, Moritz RF (1993). «Transfer of paternal mitochondrial DNA during fertilization of honeybee (Apis mellifera L.) eggs». Curr. Genet. 24 (6): 539–43. DOI:10.1007/BF00351719. PMID 8299176.
  16. Fontaine, KM, Cooley, JR, Simon, C (2007). «Evidence for paternal leakage in hybrid periodical cicadas (Hemiptera: Magicicada spp.)». PLoS One. 9: e892. DOI:10.1371/journal.pone.0000892.
  17. Gyllensten U, Wharton D, Josefsson A, Wilson AC (1991). «Paternal inheritance of mitochondrial DNA in mice». Nature 352 (6332): 255–7. DOI:10.1038/352255a0. PMID 1857422.
  18. Shitara H, Hayashi JI, Takahama S, Kaneda H, Yonekawa H (1998). «Maternal inheritance of mouse mtDNA in interspecific hybrids: segregation of the leaked paternal mtDNA followed by the prevention of subsequent paternal leakage». Genetics 148 (2): 851–7. PMID 9504930.
  19. Zhao X, Li N, Guo W, et al (2004). «Further evidence for paternal inheritance of mitochondrial DNA in the sheep (Ovis aries)». Heredity 93 (4): 399–403. DOI:10.1038/sj.hdy.6800516. PMID 15266295.
  20. Steinborn R, Zakhartchenko V, Jelyazkov J, et al (1998). «Composition of parental mitochondrial DNA in cloned bovine embryos». FEBS Lett. 426 (3): 352–6. DOI:10.1016/S0014-5793(98)00350-0. PMID 9600265.
  21. Schwartz M, Vissing J (2002). «Paternal inheritance of mitochondrial DNA». N. Engl. J. Med. 347 (8): 576–80. DOI:10.1056/NEJMoa020350. PMID 12192017.
  22. 1 2 3 4 5 Айала Ф. Д. Современная генетика. 1987.
  23. http://chemistry.umeche.maine.edu/CHY431/MitoDNA.html
  24. MW Gray, BF Lang, R Cedergren, GB Golding, C Lemieux, D Sankoff, M Turmel, N Brossard, E Delage, TG Littlejohn, I Plante, P Rioux, D Saint-Louis, Y Zhu and G Burger (1998). «Genome structure and gene content in protist mitochondrial DNAs». Nucleic Acids Research 26: 865-878.http://nar.oxfordjournals.org/cgi/content/abstract/26/4/865
  25. en:Mitosome#cite_note-Leon04-7
  26. Дьяков Ю. Т., Шнырева А. В., Сергеев А. Ю. Введение в генетику грибов. — М.: изд. центр «Академия», 2005. — С. 52. — ISBN 5-7695-2174-0

Ссылки

См. также

Митохондриальная Ева — Википедия

Митохондриальная Ева
Время появления 234 000—99 000 лет назад[1]
Место появления Восточная Африка
Мутации-маркеры Не имеет

Митохондриальная Ева — имя, данное в популярной культуре женщине, жившей в Африке около 200 000 лет назад, от которой современное человечество унаследовало митохондриальную ДНК (оригинальный термин, предложенный первооткрывателем Алланом Вильсоном — Lucky Mother — Удачливая мама). Эта женщина стала единственной в своём поколении, чьи потомки по женской линии дожили до наших дней. Параллельно с ней жили и другие женщины, но их митохондриальные ДНК до нашего времени не сохранились. От них людям могли достаться другие участки ядерной ДНК.

Поскольку митохондриальная ДНК наследуется только по материнской линии, у всех ныне живущих людей такая ДНК была получена от «Евы». Аналогично, ДНК мужской Y‑хромосомы у всех людей мужского пола должна происходить от «молекулярно-биологического Адама».

Митохондрии — это внутриклеточные органеллы, имеющие небольшую собственную хромосому. В отличие от ядерной ДНК, которая содержит подавляющее большинство генов и в процессе полового размножения подвергается рекомбинации, так что потомки получают половину генов от отца, а вторую половину — от матери, митохондрии и их ДНК ребёнок получает только из материнской яйцеклетки. Поскольку митохондриальная ДНК не подвергается рекомбинации, изменения в ней могут происходить исключительно посредством редких случайных мутаций. Путём сравнения последовательности митохондриальной ДНК и возникших в ней со временем мутаций можно не только определить степень родства ныне живущих людей, но и приблизительно вычислить время, необходимое для накопления мутаций в той или иной популяции людей[2][3]. Таким образом можно вычислить и эпоху, в которой мутаций ещё не было, и предковая популяция людей была генетически однородной. В 1987 году Ребекка Канн (англ. Rebecca Cann) с коллегами предположили, что митохондриальная Ева могла жить между 140 тыс. и 280 тыс. лет назад. Согласно более поздним расчётам, митохондриальная Ева жила около 140 тыс. лет назад в Восточной Африке[4][5]. Современные МП- и МЭ‑оценки обычно дают диапазон возраста Евы 230—140 тыс. лет с максимумом вероятности на значениях порядка 200—180 тыс. лет[6]. Последняя датировка стала общепризнанной оценкой. Тем не менее, в августе 2013 года появились новые данные о том, что Ева жила 148—99 тысяч лет назад (с максимальной вероятностью — 124 тысячи лет назад)[7].

Доминирование потомков митохондриальной Евы

Хотя митохондриальная Ева названа в честь библейской, её не следует отождествлять с библейским персонажем или считать, что все люди являются потомками только одной женщины. Митохондриальная Ева — научная абстракция, созданная для упрощения расчётов. На самом деле речь идёт об относительно однородной генетической популяции, среди потомков которой большинство ныне живущих людей получило митохондриальную ДНК от одной[8] женщины, в то время как потомки других женщин по прямой женской линии той же предковой популяции не дожили до наших дней. Если у женщины нет ни одной дочери, то её митохондриальная ДНК не будет передана потомкам далее её собственного сына, хотя половину других генов унаследуют сыновья и их потомство[9].

Митохондриальная Ева и африканское происхождение людей[править | править код]

Миграции человека и митохондриальной гаплогруппы

Поскольку популяционные генетики считают родиной митохондриальной Евы Африку, её иногда называют африканской Евой. При древнейшем разделении предковой популяции людей образовались четыре главных гаплогруппы: L0, L1, L2, L3. Из них первая преобладает у бушменов, вторая — у пигмеев[10]. Две последние также имеются у африканских народов, но только от гаплогруппы L3 происходят макрогруппы М и N, носители которых мигрировали из Африки в Евразию.

Существуют альтернативные объяснения митохондриальной генеалогии народов Земли. Например, аналогичное генеалогическое древо могло получиться, если на ранней стадии расселения большинство людей погибло из-за какой-то эпидемии или природной катастрофы, а выжившие представляли собой небольшую группу кровных родственников. Однако попытки построить генеалогию народов на основании исследования других генов не подтверждают гипотезу катастрофы. Кроме того, следует принимать во внимание обмен генами, который происходил в результате браков между дальними родственниками, в результате чего геномы продолжали смешиваться в популяциях уже после исхода из Африки[4][11]. Наибольшее разнообразие мутаций, которое наблюдается у африканских народов, также можно объяснять по-разному. С одной стороны, это может быть результатом длительного проживания предковой популяции в Африке. С другой стороны, в Африке времён палеолита население могло быть просто многочисленнее, чем в других регионах.

Реконструированный гаплотип мтДНК митохондриальной Евы[править | править код]

Гаплотип митохондриальной Евы — человека, реконструированный парсимонистическим алгоритмом на основе анализа 8 000 полных последовательностей молекулы мтДНК, можно найти, например, на сайте «Human mtDNA»[12]. Нуклеотидные отличия указаны по отношению к позициям молекулы[13].

Определение Евы, указанное в начале данной статьи, допускает в чём-то более наглядную, хотя и не вполне корректную форму, основанную на знании филогении молекулы мтДНК человека. А именно, если взять двух живущих сейчас людей: относящегося к гаплогруппе L0 и не относящегося к данной гаплогруппе, то с митохондриальной Евой можно условно отождествить их ближайшего общего предка по прямой женской линии. Однако здесь возникают следующие две проблемы.

Во-первых, крайне маловероятно, что последним общим предком всех людей по женской линии была именно мать двух девочек, одна из которых сохранила мтДНК матери L0, а другая получила мутацию, характеризующую гаплогруппу L1’6. Скорее всего, митохондриальная Ева жила за много поколений до этой мутации. Современные исследования по скорости мутирования мтДНК[6][14] свидетельствуют о том, что во всей молекуле происходит одна значимая мутация примерно один раз в 3000 лет. Это означает, что огромное число родственников по прямой женской линии имеет идентичные мтДНК, и ключевая мутация могла произойти спустя тысячелетия после жизни митохондриальной Евы.

Во-вторых, имеется вероятность, что существуют люди, не относящиеся ни к гаплогруппе L0, ни к гаплогруппе L1’6, то есть, ни к одной из двух известных ветвей филогенетического древа мтДНК человека, корнем которого является митохондриальная Ева. Несмотря на то, что к настоящему времени опубликовано порядка 200 000 частичных последовательностей мтДНК и более 8000 полных, не выявивших иных ветвей, кроме двух указанных выше, тем не менее, вероятность обнаружения реликтовых линий остаётся ненулевой до тех пор, пока тестированием не будут охвачены все ныне живущие люди или, по крайней мере, семьи. Так, после недавнего обнаружения группы людей с неизвестной ранее Y-хромосомной гаплогруппой A00 время жизни Y-хромосомного Адама оказалось значительно отодвинутым в прошлое.

Схожее понятие молекулярной антропологии означает наиболее близкого общего предка всех ныне живущих людей по мужской линии. Так как Y‑хромосома передаётся только от отца к сыну, то все современные Y‑хромосомы происходят от данного мужчины, которого называют Y‑хромосомным Адамом. Подобно тому как митохондриальная Ева не была единственной женщиной в то время, не был единственным и Y‑хромосомный Адам: мужские хромосомы его современников в силу естественного процесса пресечения прямых линий просто не сохранились.

Из-за того, что Y‑хромосома значительно длиннее, чем ДНК митохондрий, примерно на 60 миллионов пар оснований, и имеет более низкую частоту мутаций, идентификация её полиморфизма замедляется и, как следствие, снижается точность оценки частоты мутаций[15].

В большинстве старых работ возраст Адама оценивался примерно в 100 000 лет и меньше, что создавало забавное несоответствие с оценкой времени жизни Евы в 140 000—200 000 лет назад: таким образом, Ева оказывалась старше Адама не менее чем на 50 000 лет. Вообще говоря, возрасты общих предков по различным участкам ДНК (мтДНК и Y‑хромосомы) не обязаны совпадать, так как процесс исчезновения аллелей в популяции является стохастическим, нет никаких общих закономерностей, требующих «синхронности» эволюции разных локусов. Некоторые учёные даже выдвигали возможные причины такой разницы — из-за практики многожёнства женщины имели больше шансов передать дочерям свои митохондриальные ДНК, чем мужчины сыновьям — Y‑хромосомы: когда у мужчины имеется несколько жён, он фактически устраняет других мужчин от воспроизведения и передачи хромосом в следующие поколения. С другой стороны, многожёнство не мешает женщинам передавать ДНК митохондрий своим детям. Эта разница может привести к уменьшению прямых мужских линий по отношению к женским[16][17].

Однако в последний год наметилась стойкая тенденция к «удревнению» Адама в научной литературе: оценки его возраста как по микросателлитным, так и по SNP-данным достигли нижней оценки возраста митохондриальной Евы. Так, Фульвио Кручиани произведены ревизия и диссекция Y‑хромосомной гаплогруппы A, приведшая к смене топологии прикорневой части глобального древа Y‑хромосомы человека и была получена МП-оценка возраста Адама в 142 000 лет[18][19]. Впрочем недавние исследования обнаружили новую гаплогруппу A00, что значительно отдалило время Y‑хромосомного Адама — от 237 000 до 581 000 лет назад (с вероятностью 95 %)[20].

Тем не менее, в августе 2013 года появились новые данные о том, что Адам жил 120—156 тысяч лет назад (с максимальной вероятностью — 138 тысяч лет назад)[21].

  1. ↑ Pedro Soares et al 2009, Correcting for Purifying Selection: An Improved Human Mitochondrial Molecular Clock. and its Supplemental Data. Архивировано 29 декабря 2009 года. The American Journal of Human Genetics, Volume 84, Issue 6, 740–759, 4 June 2009
  2. ↑ A. C. Wilson, R. L. Cann, S. M. Carr, M. George Jr., U. B. Gyllensten, K. Helm- Bychowski, R. G. Higuchi, S. R. Palumbi, E. M. Prager, R. D. Sage, and M. Stoneking (1985) «Mitochondrial DNA and two perspectives on evolutionary genetics». Biological Journal of the Linnean Society 26:375-400
  3. ↑ Bryan Sykes The Seven Daughters of Eve: The Science That Reveals Our Genetic Ancestry, W.W. Norton, 2001, hardcover, 306 pages, ISBN 0-393-02018-5
  4. 1 2 Richard Dawkins. The Ancestor’s Tale, A Pilgrimage to the Dawn of Life (англ.). — Boston: Houghton Mifflin Company (англ.)русск., 2004. — ISBN 0-618-00583-8.
  5. Cann, R.L.; Stoneking, M., and Wilson, A.C. Mitochondrial DNA and human evolution (англ.) // Nature. — 1987. — Vol. 325. — P. 31—36. — DOI:10.1038/325031a0.
  6. 1 2 Soares P, Ermini L, Thomson N, Mormina M, Rito T, Rohl A, Salas A, Oppenheimer S, Macaulay V, Richards MB.Correcting for purifying selection: an improved human mitochondrial molecular clock., Am J Hum Genet 84(6):740-759. 2009
  7. ↑ Наиболее близкие общие предки современных людей жили в одну эпоху — Газета. Ru | Наука
  8. ↑ Поскольку одновременная мутация у нескольких индивидов практически невозможна.
  9. ↑ See the chapter All Africa and her progenies in Richard Dawkins. River Out of Eden (неопр.). — New York: Basic Books, 1995. — ISBN 0-465-06990-8.
  10. ↑ mtDNA Variation in the South African Kung and Khwe
  11. ↑ Out of Africa Again and Again by Templeton in Nature
  12. ↑ Human mtDNA
  13. ↑ rCRS
  14. ↑ Eva-Liis Loogvali, Toomas Kivisild, Tonu Margus, Richard Villems Explaining the Imperfection of the Molecular Clock of Hominid Mitochondria., PLoS ONE 4(12): e8260, 2009
  15. Russell Thomson, Jonathan K. Pritchard, Peidong Shen, Peter J. Oefner, and Marcus W. Feldman. Recent common ancestry of human Y chromosomes: Evidence from DNA sequence data (англ.) // Proceedings of the National Academy of Sciences of the United States of America : journal. — 2000. — Vol. 97, no. 13. — P. 6927—6929. — DOI:10.1073/pnas.97.13.6927. — PMID 10860948.
  16. Stone et al. Fundamentals of Human Evolution // Genes, Culture and Human Evolution (неопр.). — 2007. — ISBN 1-4051-3166-7.
  17. Cavalli-Sforza; Luigi Luca. Human evolution and its relevance for Genetic Epidemiology (англ.) // Annual review of genomics and human genetics : journal. — 2007. — Vol. 8. — P. 1—15. — DOI:10.1146/annurev.genom.8.080706.092403. — PMID 17408354.
  18. ↑ Fulvio Cruciani, Beniamino Trombetta, Andrea Massaia, Giovanni Destro-Biso, Daniele Sellitto y Rosaria Scozzari 2011, A Revised Root for the human Y-chromosomal Phylogenetic Tree: The Origin of Patrilineal Diversity in Africa
  19. Cruciani, Fulvio; Trombetta, Beniamino; Massaia, Andrea; Destro-Bisol, Giovanni; Sellitto, Daniele; Scozzari, Rosaria. A revised root for the human Y chromosomal phylogenetic tree: The origin of patrilineal diversity in Africa (англ.) // The american journal of human genetics : journal. — 2011. — Vol. 88, no. 6. — P. 814. — DOI:10.1016/j.ajhg.2011.05.002.
  20. Mendez, Fernando; Krahn, Thomas; Schrack, Bonnie; Krahn, Astrid-Maria; Veeramah, Krishna; Woerner, August; Fomine, Forka Leypey Mathew; Bradman, Neil; Thomas, Mark. An African American paternal lineage adds an extremely ancient root to the human Y chromosome phylogenetic tree (англ.) // American Journal of Human Genetics (англ.)русск. : journal. — 2013. — 7 March (vol. 92, no. 3). — P. 454. — DOI:10.1016/j.ajhg.2013.02.002. (primary source)
  21. ↑ Наиболее близкие общие предки современных людей жили в одну эпоху — Газета. Ru | Наука

Разница между митохондриальной ДНК и ядерной ДНК

Основное отличие — митохондриальная ДНК от ядерной ДНК

Митохондриальная ДНК и ядерная ДНК способствуют генетической структуре клетки. Митохондриальная ДНК (мтДНК) представляет собой двухцепочечную кольцевую ДНК, обнаруженную внутри митохондрий. Он кодирует белки и функциональные РНК, необходимые для митохондрий. Но некоторые белки, которые кодируются ядерной ДНК, импортируются из цитозоля. Ядерная ДНК (нДНК) состоит из нескольких линейных хромосом, которые кодируют почти все белки, необходимые клетке. Митохондриальная ДНК короткая по сравнению с ядерной ДНК. главное отличие между митохондриальной ДНК и ядерной ДНК является то, что митохондриальная ДНК кодируется для генетической информации, требуемой митохондриями в то время как ядерная ДНК кодируется для генетической информации, необходимой для всей клетки.

Эта статья объясняет,

1. Что такое митохондриальная ДНК
      — определение, структура и состав, функция
2. Что такое ядерная ДНК
     – Определение, структура и состав, функция
3. В чем разница между митохондриальной ДНК и ядерной ДНК


Что такое митохондриальная ДНК

Митохондрия участвует в производстве клеточной энергии посредством окислительного фосфорилирования. Внутри митохондрии обнаружен собственный геном; это называется митохондриальной ДНК (мтДНК). МтДНК состоит из двухцепочечной кольцевой молекулы ДНК, которая расположена в одной хромосоме. Одна митохондрия состоит из десятков копий мтДНК. Митохондрия состоит из нескольких молекул мтДНК. Одна клетка может содержать более 100 митохондрий. Следовательно, на клетку можно найти более 1000 копий мтДНК. Количество копий мтДНК на клетку зависит от количества копий мтДНК на митохондрии, а также от размера и количества митохондрий на клетку. Он состоит из около 0,25% генетического состава клетки. ДНК в митохондрии показана на Рисунок 1.

Рисунок 1: ДНК в митохондрии

Тридцать семь генов найдены закодированы в мтДНК. Эти гены кодируются для белков, необходимых для функций внутри митохондрий, а также для необходимых тРНК и рРНК митохондриями, особенно для синтеза белка. Митохондриальные ДНК- и РНК-полимеразы обнаружены локализованными в митохондриях. Полипептиды, синтезируемые внутри митохондрий, являются субъединицами, которые образуют мультимерные комплексы, используемые либо в синтезе АТФ, либо в транспорте электронов. МтДНК реплицируется независимо от ядерной ДНК в зависимости от потребности клетки в энергии.

У дрожжей наследование митохондрий является двухпородным. МтДНК состоит из наследования по материнской линии у людей. В зиготу сперматозоиды у млекопитающих вносят незначительный вклад в цитоплазму или ее отсутствие. Следовательно, у эмбриона почти все митохондрии происходят из яйцеклетки. У растений наследование мтДНК такое же, как у млекопитающих. Следовательно, заболевания, связанные с мтДНК, приобретаются по наследству матери. МтДНК более чувствительна к мутациям по сравнению с ядерной ДНК. Неправильные мутации в мтДНК вызывают наследственную оптическую невропатию Лебера. Большие делеции в мтДНК вызывают синдром Кернса-Сайре и хроническую прогрессирующую внешнюю офтальмоплегию. Циркулярная мтДНК показана на фигура 2.

Рисунок 2: Митохондриальная ДНК

Что такое ядерная ДНК

ДНК, которая составляет геном клетки, известна как ядерная ДНК (нДНК). НДНК находится в ядре эукариотической клетки. Он состоит из 99,75% от общего генетического состава клетки. НДНК или геном эукариотической клетки организован в несколько линейных хромосом, которые находятся в ядре. Человеческие тела состоят из 46 отдельных хромосом. Иногда нДНК существует в нескольких экземплярах. Количество копий нДНК в геноме описывается термином плоидность. Человеческие соматические клетки являются диплоидными и содержат две копии нДНК, которые называются гомологичными хромосомами. Гамет найдены гаплоидными у человека.

Размер человеческого генома составляет 3,3 миллиарда пар оснований. НДНК человека состоит из 20000-25000 генов, включая гены, обнаруженные в мтДНК. Эти гены кодируются практически для всех персонажей, представленных организмом. Они несут информацию для роста, развития и воспроизводства. Гены экспрессируются в белки в соответствии с универсальным генетическим кодом посредством транскрипции и трансляции. НДНК реплицируется только во время S-фазы клеточного цикла. Организация нДНК показана в рисунок 3.

Рисунок 3: Организация ядерной ДНК

Наследование нДНК является бипародным. Каждая из двух копий генома человека наследуется от одного из родителей, либо от матери, либо от отца. НДНК содержит огромные вариации признаков, которые они проявляют из-за присутствия различных аллелей на определенный ген. Следовательно, нДНК используется в тестировании на отцовство, чтобы выяснить, какой дочерний организм принадлежит тому или иному родителю у людей. С другой стороны, наследование болезней также характерно для родителей. НДНК менее подвержена мутациям. Примерами генетических нарушений в геноме человека являются муковисцидоз, серповидноклеточная анемия, гемохроматоз и болезнь Хантингтона. Наследование как нДНК, так и мтДНК показано в рисунок 4.

Рису

Загадки митохондрий: зачем человеку второй геном

МОСКВА, 10 июл — РИА Новости, Татьяна Пичугина. В митохондриях, интересующих генетиков, врачей, криминалистов и археологов, содержится информация об эволюции биосферы, истории человечества и неизлечимых пока генетических болезнях. Какие загадки удалось решить с их помощью — в материале РИА Новости.

Генетический код преподносит сюрпризы

Долгое время считалось, что у человека только один геном — в ядре клетки. Именно его структуру расшифровали в 1953 году Френсис Крик и Джеймс Уотсон. А спустя несколько лет нечто вроде ДНК обнаружили в митохондриях — крошечных органеллах внутри клеток. Оказалось, что они содержат еще один, совершенно самостоятельный геном, только гораздо меньших размеров.

Информация в митохондриальной ДНК (ее называют мтДНК) некоторых живых организмов закодирована не так, как в ядерной молекуле, не универсальным кодом. Отличия небольшие, но принципиальные.

Митохондрии снабжают энергией клетку. В ее внутренней мембране вырабатываются молекулы АТФ — универсальное топливо организма. Так вот, геном митохондрии кодирует информацию о синтезе белков-ферментов, без которых производство топлива невозможно.

У человека один из самых маленьких митохондриальных геномов, всего 16,5 тысячи пар нуклеотидов, 37 генов. Для сравнения: у наземных растений — сотни тысяч пар.

В митохондрии умещается несколько молекул ДНК. Они свернуты в клубок вместе с белками. В свою очередь, в клетках тела в зависимости от специализации содержится множество митохондрий.

Одно из самых удивительных открытий состоит в том, что в половых клетках — неравное число митохондрий. В человеческих сперматозоидах их нет. Это приводит к тому, что мтДНК наследуется только от матери к дочери. К тому же она не может рекомбинироваться, как ядерная ДНК, то есть составлять разные вариации из двух родительских хромосом. По наследству передаются клоны мтДНК.

Как же вышло, что у нас в клетке два разных генома? Еще в конце XIX века появилась гипотеза, что митохондрии — это бактерии-симбионты, живущие внутри клетки. Они первыми на заре эволюции живого мира стали использовать кислород для дыхания. Возможно, им было безопаснее жить внутри большой клетки, не способной к фотосинтезу. Так возник симбиоз двух типов клеток, который привел к появлению многоклеточных организмов. В наши дни эта гипотеза стала основной.

Ученые расшифровывают мтДНК

Тот факт, у человека есть второй геном, долго оставался в тени, пока в конце XX века не разработали новые методы секвенирования ДНК и обработки больших объемов данных.

В 1987 году американские ученые сравнили митохондриальные ДНК у представителей 147 разных народов из пяти регионов Земли. Выяснилось, что все они произошли от общего предка по материнской линии — митохондриальной Евы, жившей в Африке двести тысяч лет назад.

Дело в том, что если некая популяция людей разделяется и каждая группа начинает вести относительно изолированный образ жизни, то у них со временем накапливаются разные наборы мутаций, по числу которых можно определить время расхождения групп.

Митохондриальная ДНК оказалась очень удобной для изучения ископаемых останков человека. В ядре клетки — только одна молекула ДНК, тогда как митохондрий в одной клетке — десятки тысяч. К тому же молекула мтДНК свернута в кольцо. Поэтому она более устойчива к внешним воздействиям и выдерживает даже небольшое нагревание, что важно, к примеру, при идентификации обгоревших останков.

Недаром у неандертальцев сначала расшифровали митохондриальный геном. Эту работу завершил в 2009-м шведский ученый Сванте Паабо.

Сейчас за относительно небольшие деньги в коммерческих компаниях можно заказать тест своей мтДНК и узнать регион, из которого произошли предки по материнской линии.

Анализ клеток1 августа 2013, 22:07РИА НаукаУченые уточнили возраст митохондральной «Евы» и хромосомного «Адама»Ученые уточнили возраст предположительных предков человечества, расшифровав и сравнив митохондриальную ДНК и Y-хромосому 69 мужчин из всех частей света.

Поломка во втором геноме

Митохондриальная ДНК мутирует в 17 раз быстрее, чем ядерная. В результате в одной клетке могут быть митохондрии с разным геномом. Если число мтДНК-мутантов преобладает, митохондрии начинают работать неправильно, а клетки гибнут. Пострадать может любой орган: мозг, мускулы, почки, кровь, глаза, уши.

Диагностика митохондриальных болезней очень сложная, лечения от них нет. Зато генетики научились предотвращать их наследование. В одном случае берут донорскую яйцеклетку от здоровой женщины, не родственной супруге по материнской линии. Ее оплодотворяют семенем супруга и подсаживают в матку.

В другом — из донорской яйцеклетки удаляют собственное ядро и вставляют туда ядро из яйцеклетки супруги. Затем оплодотворяют составную яйцеклетку спермой супруга и подсаживают в матку. Рожденных таким способом называют «детьми от трех родителей».

Так художник представляет себе образование поры в митохондрии27 сентября 2018, 11:24РИА НаукаУченые из России выяснили, как возникают «аварии» в энергостанциях клеток

Отправить ответ

avatar
  Подписаться  
Уведомление о